
Building User Interfaces for Models

Nathaniel Osgood

MIT 15.879

April 25, 2012

Lecture Focus: Creating Custom User
Interfaces using “Controls”

• ‘Controls” are “widgets” that allow for obtaining
user input

– These widgets have properties that can be set at both
design and run (execution, simulation) time

• By setting the properties of these controls at design
time, we can

– Establish their general logical & visual properties

– Establish their correspondence with model variables

• These controls can be used by the user during
simulation to set assumptions in the model

Hands on Model Use Ahead

Load Previously Built Model:
MinimalistSIRNetworkABM

 After change, suggest saving as
“UISupportedMinimalistSIRNetworkABM”

Recall: Hardcoded Exposure Rate

“Hard-coded” rate

Add a Related Parameter to Main

Setting the Transition to
Refer to the Parameter in Main

 Note that

“exposureHazard” lives in

“Main”. To get a reference

to the “Main”

object, we call “get_Main()”

on ourselves.

Resulting Expression

Reminder: An Explicitly Specified
Population Size

A Parameter Giving the Population Size

Setting the Population to Use the
Parameter Value

Reminder: The Existing Experiment

Running that Experiment

Reminder: Pushing the Button Shows
the Simulation Visualization

Understanding the Button’s Actions

Adding a Slider to Represent the Population Size

Fill in this information

Setting the Simulation Parameter Values to
Use the Slider Setting

The value of the slider

Choosing a High Value on the Slider

Resulting Network – Large Population

Choosing a Low Value on the Slider

Resulting Network -- Small Population

Adding (Static) Text Labeling Slider

Fixed text – doesn’t change

over time

Creating a Text Element to Give the Slider Value

This text is initially blank, but

we’ll set it elsewhere to change

over time with the slider value

Dynamic Properties to Report the Slider Value

By setting this expression to determine the

dynamic value of the text field “Text” property,

the string associated with this text will

automatically change with the slider value

Example Resulting Output

Reflecting on Temporal Specificity of
UI Elements

• The user interface component (slider) we
created thus has had its value used to set the
initial state of the model (the population size)

• User interface components can also be used
to vary assumptions dynamically during
runtime

– For example, vary parameter values

Example: Creating a Slider to
Dynamically Vary the Infection Hazard

Set these as

the upper and

lower bounds

of the slider

Link so that

changing the slider

automatically

changes the

exposureHazard

parameter

A High Slider Value Leads to a More
Rapid Spread

Dropping the Slider Value (Exposure
Hazard) to 0 Can Stop the Spread

Recall: The Initial Infection Seed

This delivered

an infection

message to a

randomly

selected

person in the

population

Cut Text from Startup Code for Main

Setting the Button to Seed a New Infection

This is the

action the

button will

perform when

pushed

With Multiple Presses, Multiple “Seed”
Infections

Add a Contingent Reporting Variable

Initial value

should be false

Contingent Infection Reporting

This makes the

reporting contingent

on the value of

isReportingEnabled

Contingent Recovery Reporting

This makes the

reporting contingent

on the value of

isReportingEnabled

Enabling Reporting

Link to the

“isReportingEnabled”

parameter

Unless Reporting is Enabled (i.e.
Checkbox is Checked), No Output

Enabling Reporting Allows Output

Cleaning Up by Separating the Network
Display Space from Other Model Components

This is the display “origin” for the

agents. Positive coordinates for the

agents will yield locations visually to the

right and below this

Resulting Visual Separation

Hands on Model Use Ahead

Load Example Model:
HardcodedMinimalistNetworkABMMo

delWithFileDrivenNetworkStructure

Recall: “Hardcoded” File Names

This currently “hardcodes” that we are

opening a particular Pajek file

Creating a Parameter to Communicate the
Network File Name & Location (“Path”)

Indicate that this parameter holds a

 (reference to a) String

Creating an “Enum” to Encode the
Possible Types of the Specified File

Specifies legal types of files

Creating a Parameter to Encode the
Network File Type

Specifies that this parameter encodes

the legal types of files (as specified by

the NetworkFileType enumeration)

Referring to the External Java Swing Library

Choose “Add” to add the reference to the “swing-

layout-1.0.1.jar” file, which contains the Java library

containing the “JFileChooser” control (dialog box).

[This is freely downloadable; some other versions

may also do)]

Adding a Reference to the Java
“Swing” File Chooser Component

We add a reference here to the

“JFileChooser” control, since we need

to use it

Adding a Button “buttonSelectFile”

Add an EditBox
editboxNetworkFilePathAndName

Adding a Label for the Filename

This is static text

Logic to Set the File Name

Here, we open the

Dialog box, which

returns a value

indicating the result.

If this return value

indicates that the user

wants to go ahead with

the chosen file…

…set the text in

the

Editbox to

The “fully

Qualified”

filename

(including path)

Add these values.

Note that the order is

important – it must be

in the same order as

in the NetworkFileType

Enum (since we’ll just use

the position to select the

Appropriate enum value)

For the network file path &

name parameter, we just

take the value from the

editbox

For the network file type parameter (which requires an

enum value), we just pass the enum value at the index

given by the “Radio button” (the first enum value [i.e.

at index 0] if the first radio button is selected, the

second if the second radio button is selected)

Startup Code for Main

For the startup code for Main, we call the appropriate method

to process the specified file, where the identity of that method

is indicated by the specified NetworkFileType

